TypeJournal Article
Languageen
Research Themes
Spatial predictions of soil macro and micro-nutrient content across Sub-Saharan Africa at
250 m spatial resolution and for 0–30 cm depth interval are presented. Predictions were produced for
15 target nutrients: organic carbon (C) and total (organic) nitrogen (N), total phosphorus (P), and
extractable—phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), sodium (Na), iron
(Fe), manganese (Mn), zinc (Zn), copper (Cu), aluminum (Al) and boron (B). Model training was
performed using soil samples from ca. 59,000 locations (a compilation of soil samples from the AfSIS,
EthioSIS, One Acre Fund, VitalSigns and legacy soil data) and an extensive stack of remote sensing
covariates in addition to landform, lithologic and land cover maps. An ensemble model was then created for
each nutrient from two machine learning algorithms.
Citation
Hengl, T.; Leenaars, J. G. B.; Shepherd, K. D.; Walsh, M. G.; Heuvelink, G. B. M.; Mamo, T.; Tilahun, H.; Berkhout, E.; Cooper, M.; Fegraus, E.; Wheeler, I.; Kwabena, N. A.2017.Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems.109(1) 77–102pp. doi:10.1007/s10705-017-9870-x
Authors
- Hengl, T.
- Leenaars, Johan G.B.
- Shepherd, Keith D.
- Walsh, M. G.
- Heuvelink, Gerard B.M.
- Mamo, T.
- Tilahun, H.
- Berkhout, E.
- Cooper, M.
- Fegraus, E.
- Wheeler, I.
- Kwabena, N. A.